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SUPERLINEAR PCG METHODS 
FOR SYMMETRIC TOEPLITZ SYSTEMS 

STEFANO SERRA 

ABSTRACT. In this paper we deal with the solution, by means of precondi- 
tioned conjugate gradient (PCG) methods, of n x n symmetric Toeplitz sys- 
tems An(f)x = b with nonnegative generating function f. Here the function 
f is assumed to be continuous and strictly positive, or is assumed to have 
isolated zeros of even order. In the first case we use as preconditioner the 
natural and the optimal r approximation of An(f) proposed by Bini and Di 
Benedetto, and we prove that the related PCG method has a superlinear rate 
of convergence and a total arithmetic cost of O(n log n) ops. Under the second 
hypothesis we cannot guarantee that the natural r matrix is positive definite, 
while for the optimal we show that, in the ill-conditioned case, this can be really 
a bad choice. Consequently, we define a new r matrix for preconditioning the 
given system; then, by applying the Sherman-Morrison-Woodbury inversion 
formula to the preconditioned system, we introduce a small, constant num- 
ber of subsidiary systems which can be solved again by means of the previous 
PCG method. Finally, we perform some numerical experiments that show the 
effectiveness of the devised technique and the adherence with the theoretical 
analysis. 

1. INTRODUCTION 

In this paper, we discuss the solution of Toeplitz systems Anx b by using 
the preconditioned conjugate gradient (PCG) method. Here we suppose that the 
Toeplitz matrix An is symmetric and is generated by a continuous 2ir-periodic func- 
tion f, defined in the fundamental interval I = [-ir, 7r] and periodically extended 
to the whole real axis, in the sense that the entries along the diagonals are given by 
the Fourier coefficients of the function f. Since we are interested in the symmetric 
case, we have to suppose that f is also an even function; more precisely we have 

1 7r 

(1) [An]j,k = aij-ki = f f(x) cos((j - k)x)dx, 0 < j, k < n -1. 

We point out that the generating function f is given in some applications of Toeplitz 
systems. Classical examples are the kernels of the Wiener-Hopf equations [21], the 
spectral density functions in stationary stochastic processes [25, 24], and the point- 
spread functions in image processing [29]. 

When the generating function is continuous and positive there are many types 
of preconditioners [10, 14, 4, 18, 19, 5] chosen in the circulant algebra [16], in the r 
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class [3], or in the Hartley one [5], where each matrix operation costs 0 (n log n) ops 
and O(log n) parallel steps [39, 6, 5]. These preconditioners lead to superlinearly 
convergent PCG methods [10, 14, 4, 5, 9] in the case where f is assumed to belong 
to the Wiener class, i.e., the previously defined Fourier coefficients give rise to 
an absolutely summable sequence. Under more restrictive hypotheses about the 
regularity properties of f, it is also shown that the related PCG methods have a 
quadratic rate of convergence [10, 14, 4, 5]. More recently, in the circulant and 
the Hartley case, the proof of superlinear convergence has been extended under the 
weakened assumption of continuity and positivity of f (see [12, 27]). 

The first result we present here is this extension for the optimal r preconditioner 
and a similar result for the natural circulant and r preconditioners. The main tool 
is the Jackson characterization [26] of the Weierstrass approximation theorem like 
in the Chan, Yeung paper [12]. However, by counting the number of outliers [2] of 
the preconditioned matrices [12, 27], we observe that the spectral clustering around 
1, achieved by the r preconditioner, is slightly better. 

When f has zeros, we know that the related matrices are asymptotically ill- 
conditioned [25, 32, 36]. Unfortunately, in this case, circulant and Hartley precon- 
ditioners fail; in [18], Di Benedetto has shown that the natural circulant precon- 
ditioner [10] is singular when, for instance, f vanishes in x = 0. Moreover, this 
author has proved that the optimal circulant preconditioner [14] and the optimal 
Hartley preconditioner [14] are positive definite, but the preconditioned matrices 
have a spectral cluster around 1 and also O(nO) eigenvalues in any open interval 
(0, c) with 3 depending on the order of the zeros of f (for a richer analysis see 
[38, 20]). By virtue of the powerful convergence theory for PCG methods due, 
mainly, to Axelsson and Lindskog [2], it follows that the PCG methods related to 
these Hartley and circulant preconditioners are not competitive with the superfast 
methods [1, 17] and with the r based or band-Toeplitz based PCG methods (see 
[19, 18, 7, 11, 37, 32, 36, 33]). 

In this paper, under the nonnegative assumption, we propose a new r precon- 
ditioner which joins the good computational features of the T algebra and a strict 
approximation property with respect to the matrix An (f). We obtain an algo- 
rithm which is based on the use of the Sherman-Morrison-Woodbury formula and 
on superlinear PCG methods, and which has an arithmetic cost of O(n log n) ops 
and 0(log n) parallel steps. We observe that, for the case of f having, zeros, the 
only superlinear PCG method previously devised was the one obtained by using 
band-Toeplitz preconditioners (see [37]). 

The paper is organized as follows. In Section 2 we prove that the optimal r 
preconditioner, introduced and discussed in [4], assures a superlinear convergence 
speed in the continuous, positive case. A similar analysis is carried out for the nat- 
ural circulant and r preconditioners. In Section 3, we introduce a new symmetric 
positive definite (SPD) r preconditioner for which we deduce good approximation 
properties with respect to An(f). In Section 4, we devise an algorithm associated 
to the former preconditioner and we discuss the related arithmetic and parallel 
costs. In Section 5, we perform some numerical experiments which plainly confirm 
the effectiveness of the proposed ideas, and we make a practical and theoretical 
comparison among the best strategies. Finally, in Section 6, we discuss some "pe- 
culiar" and apparently strange features of the PCG methods related to the optimal 
preconditioners. 
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2. THE T PRECONDITIONERS 

In this section we define the r matrix algebra, and we introduce the natural and 
optimal T preconditioners [4]. For any integer n, the n x n r algebra is generated by 
the symmetric Toeplitz matrix whose first row is the second vector of the canonical 
base. Given a symmetric Toeplitz matrix An whose first row is (ao, a1,, , an_1) 
the natural r matrix r(An) of An can be obtained by means of the Hankel correction: 

(2) T(An) = An-HC(An), 

where HC(An) is the Hankel matrix whose first row is (a2, a3, ... ,an_l,0,O). On 
the other hand, the optimal approximation Topt of An is defined by minimiz- 
ing the Frobenius distance from An over r. The first row of T0pt is defined by 

(q1$ iq2, *... * *n) with qj = +3aj-, n-j aj+,, j = 2,. n - , 2 and 01 
ao - n-2a2, On-, 

4 
4an-2 On - an- [4, 23]. 

FRom a spectral point of view it is possible to prove the following lemma. 

Lemma 2.1. Let An(f) be the symmetric Toeplitz matrix as defined in (1). By 
supposing that the function f is continuous and mf < Mf are the minimum and 
the maximum of f, respectively, the following relations hold: 

1. The eigenvalues A\i(An(f)) belong to (mf, Mf) [25]. 

2. The eigenvalues of the natural T approximation are generated by sn (f) (ji'), 
where sn(f) is the n-th degree Fourier expansion of f [3, 4, 6] and j = 1, . . . , n. 

3. The eigenvalues of the optimal T approximation are related to the Cesaro 
sums of f and are contained in the interval (mf, Mf ) [20]. 

As a simple consequence, we may obtain information about the extreme spectral 
properties of the matrix T(An(f)) 

Definition 2.1. The class of continuous functions f for which the modulus of 
continuity w(f, 6) is o( log - 1) is the Dini-Lipschitz class and is denoted by C*. 
The complementary set is called the W class. 

Corollary 2.1. If f E C*, then for any c > 0 there exists an integer value nt such 
that Vn > nt the eigenvalues Ai(T(An(f))) belong to (mf - c, Mf + e). The same is 
true for the optimal r matrix under the weaker assumption that f E C with c = 0 
and n = 1. 

Proof. It follows plainly from the first part of Lemma 2.1 and from the convergence 
of the Fourier series of f E C* to f (see [30, 40]). D 

Therefore, when the generating function f is strictly positive, by virtue of Corol- 
lary 2.1, we deduce that the natural T approximation of AX(f) is asymptotically 
positive definite and the spectra of An(f) and T(AX(f)) are asymptotically the 
same. Under the nonnegative assumption, the situation is more complicated. The 
presence of points xs in which the function f vanishes implies that we cannot 
guarantee the positive definiteness of T(An(f)) since we cannot guarantee the posi- 
tiveness of the related Fourier expansion. In Section 5, we will present cases where 
the natural r preconditioner is positive definite and cases where it is indefinite. 
Therefore, this observation justifies the search for a new r preconditioner (see Sec- 
tion 3) when we consider the asymptotically ill-conditioned case, namely the case 
where f has zeros [25, 28, 34, 35]. 
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Now, let us come back to the Toeplitz linear system with a positive continuous 
generating function. The aim of the following statements is the proof of a super- 
linear rate of convergence for the PCG method whose preconditioner is the natural 
T correction or the optimal T approximation of An(f). 

First we give a simple result about the global localization of the preconditioned 
matrices P,(f) = (T(An(f)))-1An(f) and P?P'(f) = (opt)'An(f) 

Lemma 2.2. If f E C*, then, for any c > 0, there exists an integer value n such 
that, Vn > n, we have that all the eigenvalues of P1 (f) belong to Mf - ,f + E 

The same is true for the pOpt(f) under the weaker assumption that f c C with 
0 = O and n = 1. 

Proof. It is a direct consequence of the first part of Lemma 2.1 and Corollary 
2.1. DH 

The subsequent step is to show the clustering property around 1 (see [10, 4]) for the 
spectrum of P, (f). Let us denote the space of all n-th degree real trigonometric 
polynomials by TPn, and all n-th degree cosine polynomials by Pn. We have 

nA 

{P n bk bk = b-kVIkI -1, 
k=-n 

and 'Pn is the real linear space described by 'Pn, where the coefficients bk are assumed 
to be real. Since 'Pn is a convex closed set of the Banach space of continuous 
periodic functions, it follows that the infimum infpepn Ilf - P11 is really attained 
by a polynomial p* of 'Pn. In the proof of the main result (Theorem 2.1) we would 
like to associate p* with a T matrix. Unfortunately, the T algebra is a real symmetric 
class of matrices related to even trigonometric sums (see part 2 of Lemma 2.1), that 
is, to cosine trigonometric polynomials. Therefore, we need to prove that p* belongs 
to the linear real subspace 'Pn and this fact, actually, holds true in the light of the 
following elegant characterization due to Jackson [26]. 

Lemma 2.3. Let f be a continuous and 2ir-periodic function. Suppose that, in 
addition, f is also even. Then for any positive n, there exists p* belonging to 

'Pn CPn suchthat IIf-p*lIoo<w f; n 

Theorem 2.1. Let f be a C* and 2ir-periodic even function. Then, for any positive 
c, there exist N and M > 0 such that for all n > N, the difference matrix An(f) - 

T(An(f)) has, at most, M eigenvalues outside (-c,). The same is true for the 
optimal T matrix under the weaker assumption that f c C. 

Proof. For any c > 0, there exists 8 > 0 such that, when Ix1 - x21 < 6, one 

finds f(xI) - f(x2) < c. Let K F,i; then w (f; K+1) < c. Hence, by 
Lemma 2.3, there is a cosine trigonometric polynomial p* of degree K which verifies 
IIf - p*II < c. Therefore, by exploiting the linearity of the Fourier operator and 
of the T transformation, the difference matrix An(f) -T(An(f)) may be viewed as 

(3) An(f)- T(An(f)) = An(f- P*) -T(An (f- P*)) + An (p*)- T(An (P*)).- 
Finally, by using Lemma 2.1, Corollary 2.1, and Lemma 2.3, we find that there 
exists N such that if n > N, the matrix An(f -P*) -T(An(f -p*)) has a Euclidean 
norm bounded by 3&. Since the matrix An(p*) - T(An(p*)) has rank 2(K - 1), by 
virtue of equation (2) and of the Courant-Fischer minimax theorem [22], the thesis 
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follows. Concerning the matrix Topt the proof is identical and basically exploits 
the convergence of the Cesaro sum to f for any continuous function f (see also 
Theorem 1 of [12]). D 

Observe that the proof of Theorem 2.1 is slightly simpler than the one given by 
Chan and Yeung [12] for the optimal circulant preconditioner Copt [14]. Basically, 
the reason is that the preconditioner T(An(f)) has a simpler definition. Moreover, 
the optimal T preconditioner (as the optimal circulant preconditioner) guarantees 
an approximation of An(f) not only in the C* class, but in the general class of 
continuous functions. However, it should be stressed that this is only an academic 
difference, since, in practice, the functions belonging to W = C\C* are pathological 
examples to be defined ad hoc, like the Lebesgue one presented in [40]. By joining 
the previous remarks and results, we easily find Corollary 2.2. 

Corollary 2.2. Let fi be a C* positive and 2ir-periodic even function and f2 be a 
continuous positive and 2ir-periodic even function. Then, for any positive c, there 
exist N and M > 0 such that for all n > N, we have that, at most, M eigenvalues 
of the matrices Pl (fl) - I and Popt(f2) - I have absolute value larger than c. 

Finally, for completeness, it is interesting to point out that the natural circulant 
preconditioner [10] assures clustering of the spectra of the preconditioned matrices 
under the same hypotheses used for the natural r preconditioner. The proof is 
exactly the same as in Theorem 2.1. 

Now, in the light of the analysis given in [10], we deduce that the related PCG 
methods, when applied to the preconditioned system 

T1An(f)x= T1b, T = T(An(f)) or T = 7opt, 

converge superlinearly. In particular, the number of required iterations, to achieve 
a preassigned accuracy 6, is uniformly bounded by an absolute constant and, there- 
fore, the total cost is dominated by c(6, f)n log n with a c(6, f) positive constant 
value independent of the dimension n. This is the same result obtained by Chan 
and Yeung using circulant preconditioners and Jin using Hartley preconditioners. 
We observe that our choice is more restrictive, because we consider the symmetric 
case and not the Hermitian case. However, in the symmetric case considered we 
take advantage of using r preconditioners, because they produce a better clustering 
(see also [4]) and are associated with the sine transform that has a cost practically 
equal to the Fourier or Hartley transforms [6]. 

3. THE NEW T PRECONDITIONER 

When the generating function f is nonnegative and possesses zeros, the class 
of symmetric Toeplitz matrices {An(f)Jn is asymptotically ill-conditioned. In this 
case, the classic iterative solvers, generally, fail in the sense that they do not con- 
verge or converge very slowly. More precisely, the rate of reduction of the error 
tends to 1 (no reduction of the error) as the dimension n tends to infinity. For 
this kind of problem, a good preconditioner is not only welcome but necessary. In 
the light of the second part of Lemma 2.1, it is trivial to conclude that we are not 
guaranteed the positive definiteness of the natural r preconditioner. An example 
of this is given by An(x4): actually T(An(f)) is not positive definite, since, for 
instance, its first 8 minimal eigenvalues, for n = 512, have a magnitude of 10-4 

(see also Section 6). 
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The alternative classical choice, i.e., the optimal r preconditioner is guaranteed 
to be positive definite but it is not able to "match" the zeros of f and then is not 
suitable in order to obtain a proper cluster around 1 of the preconditioned spectrum 
(see Section 6). 

The new SPD r preconditioner is constructed as follows. Let g be the minimal 
polynomial matching all the zeros of f with their order (which is supposed to be 
even). It is worth noting that this minimal polynomial g is different from the one 
proposed and analysed in [7, 11, 37] owing to the requirement that g has to be an 
even function like f. Then we may view f as g . h where h is a strictly positive 
function, and we obtain the new preconditioner as T(An(g))T(An(h)). This matrix, 
at the present moment, is defined only theoretically while we are interested in 
computational algorithms. In the following scheme we propose how to calculate 
this preconditioner. 

1. We suppose that we know the zeros of the even function f, namely x1,... , x5 E 

[0, ir] and the related orders 2k, . .. , 2k8. Observe that, if x :& 0, then the polyno- 
mial g, = (2 cos x - 2 COS(X))2 is nonnegative and is clearly the even polynomial of 
minimal degree which has a zero in x of order 2. If x = 0 the minimal nonnegative 
even polynomial is trivially 9o = 2 - 2 cos x. Consequently g is easily constructed 
as 

S 

9 - 1H 9X 
i=l 

By using FFTs of constant order (depending on the number and the order of the 
zeros), it is not expensive (O(I log 1) ops with I independent of n) to calculate the 
Fourier coefficients of g and, therefore, we have economically computed the matrix 
An(g) and its T correction T(An(f)). 

2. Since we have to calculate the function h, in the sense of computing its 
Fourier coefficients, we employ the relation f = g h. We face the inverse problem 
of recovering these coefficients of h, by using the Fourier representation of the 
functions f and g. This problem can be solved in 0(n) ops by using a deconvolution 
algorithm [8], involving the vectors xg and Xf, where we have stored the Fourier 
coefficients of the considered functions. Notice that the matrix T(An(h)) is easily 
obtained from the entries of An(h) by exploiting the simple equation (2). 

Finally, we point out that T(An(g))T(An(h)) is symmetric since it is, by con- 
struction, a r matrix and the r algebra is structurally symmetric. In'addition, 
as r(An(g)) and T(An(h)) are positive definite, the resulting product has positive 
eigenvalues and therefore it is an SPD matrix. 

4. A NEW ALGORITHM IN THE ILL-CONDITIONED CASE 

In this section we first perform an analysis of the "approximation properties" 
of the matrix T(An(g))T(An(h)) with regard to the problem matrix A(f). Then, 
by exploiting some information from this analysis, we propose a new procedure to 
solve the given linear system. 

Theorem 4.1. Let r(2) be the preconditioner introduced in Section 3 and let 
P2(f) = (T(2))-1AX(f) be the second preconditioned matrix. Then P2(f) can be 
viewed as the sum of two contributions P1 (h) and LR. Here, as h is strictly positive 
and continuous, P1 (h) has a spectrum clustered around 1 (see Corollary 2.2), while 
LR is a matrix having a rank independent of n. 
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Proof. Preliminarily, we observe that, because of the relation f = g h where 
g is polynomial of fixed degree, we find An(f) = An(g)An(h) + LR1 with the 
rank of LR1 depending only on the degree of g. Moreover, by (2), we have 
r(An(g)) = An(g) + LR2, rankLR2 = constant and therefore by applying the 
Sherman-Morrison-Woodbury (SMW) formula (see equation (5)) we deduce 

r(An (g)) l = (I+ LR3)A-l(g), 

with rankLR3 = constant. Then, by indicating with LRj "low" and constant rank 
matrices, the following relations hold true: 

P,r2 ( f )=(,T (2) ) - 1 (An (g) An (h) + LRI ) 
T(An(h))-l(I + LR3)A- 1(g)(An(g)An(h) + LR1) 
T(An(h))-l(I + LR3)(An(h) + LR4) 
T(An (h)) - 1 (An (h) + LR5) 
T(An(h))-lAn(h) + LR6. 

The theorem is proved by putting LR = LR6 and by observing that P, (h) 
,T(An (h)) - 1An (h). F- 

Unfortunately, the matrix LR is not symmetric and cannot be symmetrized 
by the same transformation that symmetrizes Pl (h). Therefore, we cannot apply 
the Courant-Fischer minimax characterization [22] but we can deduce a proper 
clustering around 1 of the singular values and a superlinear rate of convergence for 
the related PCG method when applied to the normal equations. 

An alternative possibility is given by the representation of P 2(f) derived in 
Theorem 4.1. The original system An(f)X = b is equivalent to 

(4) (An(h) + LRs)x 
= b, b = (T(An(g)))-lb7 

where b is computable sequentially in 0(n) ops by using a band-solver or in parallel 
in 0(logn) steps by means of fast sine transforms. By following the relations 
proved in Theorem 4.1, it is also easy to verify that the matrices LRi, i = 1, .. , 6, 
may be formally and numerically computed in O(n log n) ops and O(log n) parallel 
steps. Finally, the solution of the original system is obtained by applying the SMW 
inversion formula to the system (4). We recall that the SMW formula can be applied 
in the following way: given B A + LR and 

LR X X Y, X YT C RCxn, 
c rank(LR) =constant 

we obtain x= B-1b as 

(5) B-1b = A-1b - A-1X(I, + YA 1X)<YA1b. 

The cost of the calculation x is "reduced" to the solution of some systems with 
coefficient matrix A (which are assumed easy to solve) and to the inversion of the 
cxc matrix I + YA-1X. In our case, we observe that the subsidiary systems having 
as coefficient matrix An (h), h positive even continuous function, can be solved with 
the superlinear PCG method devised in [4] and extended to the continuous case in 
Section 2. Therefore the total cost is bounded by c1n log n ops and c2 log n parallel 
steps where the coefficients cj are independent of the dimension n and depend only 
on the functions f, g and on the preassigned accuracy 6. 
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TABLE 1. f(x) = H*(x), superlinear PCG 

nt 16 32 64 128 256 512 
Iter (Prec=I) 8 15 20 31 45 74 
Iter (Prec=T(A,(f))) 6 7 8 9 10 9 

TABLE 2. f(x) = - e-x2 

n I' Copt B"'l Bn,5 T(1) T(2) 
128 42 10 17 3 4 4 
512 143 17 17 3 4 4 

5. NUMERICAL EXPERIMENTS AND COMPARISONS 

In order to show experimentally the validity of the analysis of Section 2, we need 
an even function f which is positive and continuous but not in the Wiener class. As 
pointed out in [12], a possible candidate is the Hardy-Littlewood series [40] given 
by 

o( Zeiklogk e -iklogk 
H(z) - k ~~e + A e ,x E -r) '7]. 

Unfortunately, this function is not positive and is not even. Consequently, we define 
H*(x) as H(x)+2H(-x) + 3.02. This function is continuous, even, positive and does 
not belong to the Wiener class. For n = 512, the Euclidean condition number of 
An(H*) is equal to 2.37 103 and it increases as n grows. Table 1 shows the number 
of steps, in order to reach an accuracy of 6 < 10-7, when the identity and our T 

preconditioner is applied to the original system with bi = 1 for any i. 
Now, we consider the ill-conditioned case by considering nonnegative generating 

functions having zeros. We compare the convergence rate of the minimal band 
Toeplitz preconditioner [7], with the near optimal band Toeplitz preconditioner [37], 
with the optimal circulant preconditioner [14], with the natural T preconditioner 
[4], and with our T preconditioner for two different generating functions. They are 
1 _ eX2 and x4 and are associated to ill-conditioned matrices An having Euclidean 
condition numbers equal to 0(n2) and 0(n4), respectively (see for instance [34, 35]). 
The matrices An are formed by evaluating the Fourier coefficients of the generating 
functions by using FFTs (see [11]). In the considered tests, the vector of all ones 
is the right-hand side vector, the zero vector is the initial guess, and the stopping 
criterion is IIrq 2 / I rO1 2< 10-7, where rq is the residual vector after q iterations. 
All computations are done by using Matlab. 

In Tables 2 and 3, I denotes that no preconditioning is used, Copt is the T. Chan 
optimal circulant preconditioner [14], Bn,l is the near optimal band-Toeplitz pre- 
conditioner [37] (1 indicates the semibandwidth), Bm'" is the minimal band-Toeplitz 
preconditioner [7], T(1) is the Bini-Di Benedetto preconditioner, and T(2) is our T 

preconditioner. 
Notice the "strange" behavior of the natural T preconditioner T (1). In the case of 

f(x) = 1_e_x, it leads to a very fast PCG method, while, in the case of f(x) = X4, 

the convergence is not so good and depends strongly on the size n of the problem. 
The reason is very simple: as proved in Corollary 2.1, the minimal eigenvalues can 
be less than mf, which is equal to zero for the two considered functions. Fortunately, 
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TABLE 3. f(x) = X4 

n I Copt B'min Bn,5 T(l) T(2) 

128 587 77 24 11 22 8 
512 7457 406 29 13 88 10 

TABLE 4. Operation count for the i-th iteration 

p = Bn,5 P = -T(2) 
Multiplying An(f) by a vector 18n log n + qn 18n log n + qn 
Solution of Py = ci 2kin 4n log n + n 
Other operations 2n + k 2n + k 

for the first generating function, T(1) is an SPD matrix, while in the second case, 
for n = 128, T(1) has 3 eigenvalues in [-2.4 10-3, -1.2 10-3 ] and, for n = 512, 
has 8 eigenvalues in [-3.1 . 10-5, -1.0 . 10-4]. Evidently, the presence of a "few" 
negative eigenvalues causes a dramatic slowdown in the convergence rate of the 
considered PCG method. 

5.1. Operation count. First we observe a qualitative difference between the be- 
havior of the PCG methods presented. The optimal circulant preconditioner leads 
to a sublinear PCG method, while B min and Bn,5 are optimal preconditioners, and 
T(2) is superoptimal. On the other hand, the behaviour of the PCG method as- 
sociated with T(1) strongly depends on the specific generating function. However, 
the operation count for each iteration is asymptotically the same (O((n log n)), but 
it is better for the PCG methods related to the band Toeplitz preconditioners. For 
instance, the precise count for T(2) and Bn,5 are shown in Table 4, where ki 25 
for the first iteration (the LU factorization), and ki = 10 otherwise [22]. 

Therefore, by taking into account the number of iterations, the PCG related to 
Bn,5 is slightly less expensive than the one related to T(2). However, it should be 
stressed that the construction of T(2) requires the Fourier coefficients of f and g, 
while the construction of Bn,5 needs also a precise evaluation of f and g in the 
Chebyshev points. Whence, in some cases it is easy to practically define T(2) but 
we may have difficulties in defining Bn,5. 

6. WHY ARE OPTIMAL PRECONDITIONERS SO BAD? 

We did not make an explicit comparison with the optimal T preconditioner, 
because, in the ill-conditioned case, even if it is always SPD, it does not have good 
approximation properties with respect to the extremes of the spectrum of An(f). 
Let us consider the following elementary example: the finite difference discretization 
of the fourth derivative on the unit interval [0,1]. The resulting matrix is the band 
Toeplitz operator generated by p(x) 16 sin4 (X). By a direct calculation we obtain 
that the eigenvalues of the optimal circulant and T approximations are 

Ai = p(xi) +-2Xxi) + 12-4cos(xi) xi = 2(i - 1), 1 n 

and 

Ai =p(zi)+2(z), Z = Z i = 1, ... , n, 
nft?171t? +1' 
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TABLE 5. f(x) = (2 - 2 cos(X))2 

n I Copt Topt Hopt Aopt T(1) = 7(2) 
32 18 14 10 22 14 2 
128 162 31 16 55 31 2 

respectively. It follows that Vg(n) increasing function of n with limnC g (n) = 
Vi = 1,* , g(n), Ai(An(p)) and Ai (G) (G the optimal T or circulant or anticirculant 
or Hartley preconditioner) behave in a very different way when n tends to infinity. 
In particular, for i constant wrt n, Ai(An(P)) - 1/n4 and Ai(G) 1 1/n8 with 
s = 1 in the circulant case and s = 3 in the T case. Then the condition number 
of the preconditioned matrices grows, at least, as nA8. So while the natural T 

preconditioner can be good or bad (see Tables 2 and 3), the optimal preconditioners, 
in the presence of zeros of high orders, are generally bad. For evidence of this, see 
[23] and Tables 2, 3, and 5, where Aopt and Hopt indicate the optimal anticirculant 
and Hartley preconditioners. 

By generalizing the argument used for Table 5, we can say that the "averaging 
schemes", which are inherent to minimization in the FRobenius norm, destroy the 
information about the infinitesimal order of the small eigenvalues and this is the 
main reason for the observed slowdown of the related PCG methods. However, 
for symmetric Toeplitz problems, the optimal T approach is the best, among the 
optimals, owing also to the structural symmetry of the T algebra. 
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